Graphs with Bounded Induced Distance

نویسندگان

  • Serafino Cicerone
  • Gabriele Di Stefano
چکیده

In this work we introduce the class of graphs with bounded induced distance of order k, (BID(k) for short). A graph G belongs to BID(k) if the distance between any two nodes in every connected induced subgraph of G is at most k times their distance in G. These graphs can model communication networks in which node failures may occur: at a given time, if sender and receiver are still connected, any message can be delivered through a path (that, due to node failures, could be longer than the shortest one) the length of which is at most k times the best possible. In this work we first provide two characterizations of graphs belonging to BID(k): one based on the stretch number (a new invariant introduced here), and the other based on cycle-chord conditions. After that, we investigate classes with order k ≤ 2. In this context, we note that the class BID(1) is the well known class of distance-hereditary graphs, and we show that 3/2 is a lower bound for the order k of graphs that are not distance-hereditary. Then, we characterize graphs in BID(3/2) by means of forbidden induced subgraphs, and we also show that graphs in BID(2) have a more complex characterization. We prove that the recognition problem for the generic class BID(k) is Co-NP-complete. Finally, we show that the split composition can be used to generate graphs in BID(k).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

k-forested choosability of graphs with bounded maximum average degree

A proper vertex coloring of a simple graph is $k$-forested if the graph induced by the vertices of any two color classes is a forest with maximum degree less than $k$. A graph is $k$-forested $q$-choosable if for a given list of $q$ colors associated with each vertex $v$, there exists a $k$-forested coloring of $G$ such that each vertex receives a color from its own list. In this paper, we prov...

متن کامل

Graphs with Bounded Induced Distance Sera no Cicerone

In this work we introduce the class of graphs with bounded induced distance of order k, (BID(k) for short). A graph G belongs to BID(k) if the distance between any two nodes in every connected induced subgraph of G is at most k times their distance in G. These graphs can model communication networks in which node failures may occur: at a given time, if sender and receiver are still connected, a...

متن کامل

On the Parallel Parameterized Complexity of the Graph Isomorphism Problem

In this paper, we study the parallel and the space complexity of the graph isomorphism problem (GI) for several parameterizations. Let H = {H1,H2, · · · ,Hl} be a finite set of graphs where |V (Hi)| ≤ d for all i and for some constant d. Let G be an H-free graph class i.e., none of the graphs G ∈ G contain any H ∈ H as an induced subgraph. We show that GI parameterized by vertex deletion distan...

متن کامل

Complexity and approximation ratio of semitotal domination in graphs

A set $S subseteq V(G)$ is a semitotal dominating set of a graph $G$ if it is a dominating set of $G$ andevery vertex in $S$ is within distance 2 of another vertex of $S$. Thesemitotal domination number $gamma_{t2}(G)$ is the minimumcardinality of a semitotal dominating set of $G$.We show that the semitotal domination problem isAPX-complete for bounded-degree graphs, and the semitotal dominatio...

متن کامل

Distinct Distances in Graph Drawings

The distance-number of a graph G is the minimum number of distinct edgelengths over all straight-line drawings of G in the plane. This definition generalises many well-known concepts in combinatorial geometry. We consider the distancenumber of trees, graphs with no K− 4 -minor, complete bipartite graphs, complete graphs, and cartesian products. Our main results concern the distance-number of gr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Applied Mathematics

دوره 108  شماره 

صفحات  -

تاریخ انتشار 1998